
CHAPTER NINE

MECHANICAL PROPERTIES OF FLUIDS

9.1 INTRODUCTION

In this chapter, we shall study  some common physical
properties of liquids and gases. Liquids and gases can  flow
and are therefore, called  fluids.  It is this property that
distinguishes liquids and gases from solids in a basic way.

Fluids are everywhere around us. Earth has an envelop of
air and two-thirds of its surface is covered with water.  Water
is not only necessary for our existence; every mammalian
body constitute mostly of water. All the  processes occurring
in living beings including plants are mediated by fluids. Thus
understanding the behaviour and properties of fluids is
important.

How are fluids different from solids? What is common in
liquids and gases? Unlike  a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
whereas a gas fills the entire volume of its container. We
have learnt in the previous chapter that the volume of solids
can be changed by stress. The volume of solid, liquid or gas
depends on the stress or pressure acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pressure. The difference between gases
and solids or liquids is that for solids or liquids the change
in volume due to  change of external pressure is rather small.
In other words solids and liquids have much lower
compressibility as compared to gases.

Shear stress can change the shape of a solid keeping its
volume fixed. The key property of fluids is that they offer
very little resistance to shear stress; their shape changes by
application of very small shear stress. The shearing stress
of fluids is about million times smaller than that of solids.

9.2  PRESSURE

A sharp needle when pressed against our skin pierces it. Our
skin, however, remains intact when a blunt object with a
wider contact area (say the back of a spoon) is pressed against
it with the same force. If an elephant were to step on a man’s
chest, his ribs would crack. A circus performer across whose
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chest a large, light but strong wooden plank is
placed first, is saved from this accident. Such
everyday experiences convince us that both the
force and its coverage area are important. Smaller
the area on which the force acts, greater is the
impact. This impact is known as pressure.

When an object is submerged in a fluid at
rest, the fluid exerts a force on its surface. This
force is always normal to the object’s surface.
This is so because if there were a component of
force parallel to the surface, the object will also
exert a force on the fluid parallel to it; as a
consequence of Newton’s third law. This force
will cause the fluid to flow parallel to the surface.
Since the fluid is at rest, this cannot happen.
Hence, the force exerted by the fluid at rest has
to be perpendicular to the surface in contact
with it. This is shown in Fig.9.1(a).

The normal force exerted by the fluid at a point
may be measured. An idealised form of one such
pressure-measuring device is shown in Fig.
9.1(b). It consists of an evacuated chamber with
a spring that is calibrated to measure the force
acting on the piston. This device is placed at a
point inside the fluid. The inward force exerted
by the fluid on the piston is balanced by the
outward spring force and is thereby measured.

If F is the magnitude of this normal force on the
piston of area A then the average pressure Pav

is defined as the normal force acting per unit
area.

P
F

Aav =              (9.1)

In principle, the piston area can be made
arbitrarily small. The pressure is then defined
in a limiting sense as

P = 
lim

∆A 0→

∆
∆

F

A
(9.2)

Pressure is a scalar quantity. We remind the
reader that it is the component of the force
normal to the area under consideration and not
the (vector) force that appears in the numerator
in Eqs. (9.1) and (9.2). Its dimensions are
[ML–1T–2]. The SI unit of pressure is N m–2. It has
been named as pascal (Pa) in honour of the
French scientist Blaise Pascal (1623-1662) who
carried out pioneering studies on fluid pressure.
A common unit of pressure is the atmosphere
(atm), i.e. the pressure exerted by the
atmosphere at sea level (1 atm = 1.013 × 105 Pa).

Another quantity, that is indispensable in
describing fluids, is the density ρ. For a fluid of
mass m occupying volume V,

ρ =
m

V
(9.3)

The dimensions of density are [ML–3]. Its SI
unit is kg m–3. It is a positive scalar quantity. A
liquid is largely incompressible and its density
is therefore, nearly constant at all pressures.
Gases, on the other hand exhibit a large
variation in densities with pressure.

The density of water at 4oC (277 K) is
1.0 × 103 kg m–3. The relative density of a
substance is the ratio of its density to the
density of water at 4oC. It is a dimensionless
positive scalar quantity. For example the relative
density of aluminium is 2.7. Its density is
2.7 × 103 kg m–3

.  The densities of some common
fluids are displayed in Table 9.1.

Table 9.1 Densities of some common fluids

at STP*(a) (b)
Fig. 9.1 (a) The force exerted by the liquid in the

beaker on the submerged object or on the
walls is normal (perpendicular) to the
surface at all points.
(b) An idealised device for measuring
pressure.

* STP means standard temperature (00C) and 1 atm pressure.
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⊳

Example 9.1   The two thigh bones (femurs),
each of cross-sectional area10 cm2 support
the upper part of a human body of mass 40
kg. Estimate the average pressure
sustained by the femurs.

Answer   Total cross-sectional area of the
femurs is A = 2 × 10 cm2 = 20 × 10–4 m2. The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s–2). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

25 m N 10  2    −
×==

A

F
Pav                             ⊳

9.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

Fig. 9.2 shows an element in the interior of a
fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P

a
, P

b 
and P

c
 on

this element of area corresponding to the normal
forces F

a
, F

b
 and F

c
 as shown in Fig. 9.2 on the

faces BEFC, ADFC and ADEB denoted by A
a
, A

b

and A
c
 respectively. Then

F
b 
sinθ = F

c
, F

b 
cosθ = F

a
(by equilibrium)

A
b 
sinθ = A

c
, A

b 
cosθ = A

a
(by geometry)

Thus,

;b c a
b c a

b c a

F F F
P P P

A A A
= = = = (9.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it.  The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends  must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the  fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

9.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 9.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P

1
 and P

2

respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P

1
A) acting

downward, at the bottom (P
2
A) acting upward.

If mg is weight of the fluid in the cylinder we
have

(P
2 

− P
1
) A = mg (9.5)

Now, if ρ is the mass density of the fluid, we
have the mass of fluid to be m = ρV= ρhA so
that

P
2 

−
 
P

1
=  ρgh (9.6)

Fig. 9.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at rest.
This element is in the form of a right-
angled prism. The element is small so that
the effect of gravity can be ignored, but it
has been enlarged for the sake of clarity.
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Fig.9.3 Fluid under gravity. The effect of gravity is
illustrated through pressure on a vertical

cylindrical column.

Pressure difference depends on the vertical

distance h between the points (1 and 2), mass

density of the fluid ρ and acceleration due to

gravity g. If the point 1 under discussion is

shifted to the top of the  fluid (say, water), which

is open to the atmosphere, P
1
 may be replaced

by atmospheric pressure (P
a
) and we replace P

2

by P. Then Eq. (9.6) gives

P =
 
P

a 
+ ρgh (9.7)

Thus, the pressure P, at depth below the

surface of a liquid open to the atmosphere is

greater than atmospheric pressure by an

amount ρgh. The excess of pressure, P −
 
P

a
, at

depth h is called a gauge pressure at that point.

The area of the cylinder is not appearing in

the expression of absolute pressure in Eq. (9.7).

Thus, the height of the fluid column is important

and not cross-sectional or base area or the shape

of the container. The liquid pressure is the same

at all points at the same horizontal level (same

depth).  The result is appreciated through the

example of hydrostatic paradox. Consider three

vessels A, B and C  [Fig.9.4] of different shapes.

They are connected at the bottom by a horizontal

pipe. On filling with water, the level in the three

vessels is the same, though they hold different

amounts of water. This is so because water at

the bottom has the same pressure below each

section of the vessel.

Fig 9.4 Illustration of hydrostatic paradox. The
three vessels A, B and C contain different
amounts of liquids, all upto the same

height.

Example 9.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h = 10 m and ρ = 1000 kg m-3. Take g = 10 m s–2

From Eq. (9.7)
P =

 
P

a 
+ ρgh

   = 1.01 × 105 Pa + 1000 kg m–3 × 10 m s–2 × 10 m
   = 2.01 × 105 Pa
    ≈ 2 atm

This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures.   ⊳

9.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 × 105 Pa (1 atm). Italian scientist
Evangelista Torricelli (1608–1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.9.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small  that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, Pa.

P
a 
= ρgh (9.8)

where ρ is the density of mercury and h is the
height of the mercury column in the tube.
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⊳

⊳

In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of ρ in Eq. (9.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.
The mm of Hg and torr are used in medicine

and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 105 Pa
An open tube manometer is a useful

instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 9.5 (b)]. The pressure P at A
is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P − P

a
, given by Eq. (9.8) and is proportional to

manometer height h.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 9.3 The density of the
atmosphere at sea level is 1.29 kg/m3.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (9.7)

ρgh  =  1.29 kg m–3 × 9.8 m s2 × h  m = 1.01 × 105 Pa

∴ h = 7989 m ≈ 8 km

In reality the density of air decreases with

height. So does the value of g. The atmospheric

cover extends with decreasing pressure over

100 km. We should also note that the sea level

atmospheric pressure is not always 760 mm of

Hg. A drop in the Hg level by 10 mm or more is a

sign of an approaching storm. ⊳

Example 9.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm × 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 × 103 kg m -3,
g = 10 m s–2.)

(b) The open tube manometer

Fig 9.5  Two pressure measuring devices.

Fig 9.5 (a) The mercury barometer.
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Answer Here h = 1000 m and ρ = 1.03 × 103 kg m-3.
(a) From Eq. (9.6), absolute pressure

P =
 
P

a 
+ ρgh

= 1.01 × 105 Pa
   + 1.03 × 103 kg m–3  × 10 m s–2 × 1000 m
=  104.01 × 105 Pa
≈ 104 atm

(b) Gauge pressure is P −
 
P

a 
= ρgh = P

g

P
g
 = 1.03 × 103 kg m–3 × 10 ms2 × 1000 m

    = 103 × 105 Pa
     ≈ 103 atm

(c) The pressure outside the submarine is
P =

 
P

a 
+ ρgh and the pressure inside it is P

a
.

Hence, the net pressure acting on the
window is gauge pressure, P

g
 = ρgh. Since

the area of the window is A = 0.04 m2, the
force acting on it is
F = P

g
 A = 103 × 105 Pa × 0.04 m2 = 4.12 × 105 N

  ⊳

9.2.4  Hydraulic Machines

Let us now consider what happens when we
change the pressure on a fluid contained in a
vessel. Consider a horizontal cylinder with a
piston and three vertical tubes at different points
[Fig. 9.6 (a)]. The pressure in the horizontal
cylinder is indicated by the height of liquid
column in the vertical tubes. It is necessarily
the same in all. If we push the piston, the fluid
level rises in all the tubes, again reaching the
same level in each one of them.

law. In these devices, fluids are used for
transmitting pressure. In a hydraulic lift, as
shown in Fig. 9.6 (b), two pistons are separated
by the space filled with a liquid. A piston of small
cross-section A

1
 is used to exert a force F

1
 directly

on the liquid. The pressure P = 
1

1

F

A
 is

transmitted throughout the liquid to the larger
cylinder attached with a larger piston of area A

2
,

which results in an upward force of P × A
2
.

Therefore, the piston is capable of supporting a
large force (large weight of, say a car, or a truck,

placed on the platform) F
2 

= PA
2 

= 
1 2

1

F A

A
. By

changing the force at A
1
, the platform can be

moved up or down. Thus, the applied force has

been increased by a factor of 
2

1

A

A
 and this factor

is the mechanical advantage of the device. The
example below clarifies it.

Fig 9.6  (a) Whenever external pressure is applied
   on any part of a fluid in a vessel, it is

equally transmitted in all directions.

     This indicates that when the pressure  on the
cylinder was increased, it was distributed
uniformly throughout. We can say  whenever
external pressure is applied on any part of a
fluid contained in a vessel, it is transmitted
undiminished and equally in all directions.
This is another form of the Pascal’s law and it
has many applications in daily life.

A number of devices, such as hydraulic lift
and hydraulic brakes, are based on the Pascal’s

Fig 9.6 (b) Schematic diagram illustrating the principle
  behind the hydraulic lift, a device used

  to lift heavy loads.

Example 9.5 Two syringes of different
cross-sections (without needles) filled with
water are connected with a tightly fitted
rubber tube filled with water. Diameters of
the smaller piston and larger piston are
1.0 cm and 3.0 cm respectively. (a)  Find
the force exerted on  the larger piston when
a force of 10 N is applied to the smaller
piston. (b) If the smaller piston is pushed
in through 6.0 cm, how much does the
larger piston move out?

Answer (a) Since pressure is transmitted
undiminished throughout the fluid,
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⊳

( )
( )

2
–2

2
2 1 2–2

1

3/2 10 m
10 N

1/2 10 m

A
F F

A

π

π

×
= = ×

×
             = 90 N

(b) Water is considered to be perfectly
incompressible. Volume covered by the
movement of smaller piston inwards is equal to
volume moved outwards due to the larger piston.

2211
ALAL =

       j 0.67 × 10-2 m = 0.67 cm
Note, atmospheric pressure is common to both
pistons and has been ignored. ⊳

Example 9.6 In a car lift compressed air
exerts a force F

1
 on a small piston having

a radius of 5.0 cm. This pressure is
transmitted to a second piston of radius
15 cm (Fig 9.7). If the mass of the car to be
lifted is 1350 kg, calculate F

1
. What is the

pressure necessary to accomplish this
task? (g = 9.8 ms-2).

Answer Since pressure is transmitted
undiminished throughout the fluid,

= 1470 N

≈ 1.5 × 103 N
The air pressure that will produce this

force is

This is almost double the atmospheric
pressure.                       ⊳

Hydraulic brakes in automobiles also work on
the same principle. When we apply a little force
on the pedal with our foot the master piston
moves inside the master cylinder, and the
pressure caused is transmitted through the
brake oil to act on a piston of larger area. A large
force acts on the piston and is pushed down
expanding the brake shoes against brake lining.
In this way, a small force on the pedal produces
a large retarding force on the wheel. An

important advantage of the system is that the
pressure set up by pressing pedal is transmitted
equally to all cylinders attached to the four
wheels so that the braking effort is equal on
all wheels.

9.3  STREAMLINE FLOW

So far we have studied fluids at rest. The study
of the fluids in motion is known as fluid
dynamics. When a water tap is turned on slowly,
the water flow is smooth initially, but loses its
smoothness when the speed of the outflow is
increased. In studying the motion of fluids, we
focus our attention on what is happening to
various fluid particles at a particular point in
space at a particular time. The flow of the fluid
is said to be steady if at any given point, the
velocity of each passing fluid particle remains
constant in time. This does not mean that the
velocity at different points in space is same. The
velocity of a particular particle may change as it
moves from one point to another. That is, at some
other point the particle may have a different
velocity, but every other particle which passes
the second point behaves exactly as the previous
particle that has just passed that point. Each
particle follows a smooth path, and the paths of
the particles do not cross each other.

Fig. 9.7 The meaning of streamlines. (a) A typical
trajectory of a fluid particle.

(b) A region of streamline flow.

The path taken by a fluid particle under a
steady flow is a streamline. It is defined as a
curve whose tangent at any point is in the
direction of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.9.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
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permanent map of fluid flow, indicating how the
fluid streams. No two streamlines can cross, for
if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map of
flow is stationary in time. How do we draw closely
spaced streamlines ? If we intend to show
streamline of every flowing particle, we would
end up with a continuum of lines. Consider planes
perpendicular to the direction of fluid flow e.g.,
at three points P, R and Q in Fig.9.7 (b). The plane
pieces are so chosen that their boundaries be
determined by the same set of streamlines. This
means that number of fluid particles crossing
the surfaces as indicated at P, R and Q is the
same. If area of cross-sections at these points
are A

P
,A

R
 and A

Q
 and speeds of fluid particles

are v
P
, v

R
 and v

Q
, then mass of fluid ∆m

P
 crossing

at A
P
 in a small interval of time ∆t is ρ

P
A

P
v

P 
∆t.

Similarly mass of fluid ∆m
R
 flowing or crossing

at A
R
 in a small interval of time ∆t is  ρ

R
A

R
v

R 
∆t

and mass of fluid  ∆m
Q
 is ρ

Q
A

Q
v

Q 
∆t crossing at

A
Q
. The mass of liquid flowing out equals the

mass flowing in, holds in all cases. Therefore,
ρ

P
A

P
v

P
∆t = ρ

R
A

R
v

R
∆t = ρ

Q
A

Q
v

Q
∆t (9.9)

For flow of incompressible fluids
ρ

P
 = ρ

R
 = ρ

Q

Equation (9.9) reduces to
A

P
v

P
 = A

R
v

R
 = A

Q
v

Q
(9.10)

which is called the equation of continuity and
it is a statement of conservation of mass in flow
of incompressible fluids. In general

Av = constant (9.11)
Av gives the volume flux or flow rate and

remains constant throughout the pipe of flow.
Thus, at narrower portions where the
streamlines are closely spaced, velocity
increases and its vice versa. From (Fig 9.7b) it
is clear that A

R  
> A

Q 
or   v

R
 <  v

Q
, the fluid is

accelerated while passing from R to Q. This is
associated with a change in pressure in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent. One sees this when a fast flowing
stream encounters rocks, small foamy
whirlpool-like regions called ‘white water
rapids are formed.

Figure 9.8 displays streamlines for some
typical flows. For example, Fig. 9.8(a) describes
a laminar flow where the velocities at different
points in the fluid may have different magnitudes

but their directions are parallel. Figure 9.8 (b)
gives a sketch of turbulent flow.

Fig. 9.8 (a) Some streamlines for fluid flow.
(b) A jet of air striking a flat plate placed
perpendicular to it. This is an example

of turbulent flow.

9.4  BERNOULLI’S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful properties for steady
or streamline flows using the conservation
of energy.

Consider a fluid moving in a pipe of varying
cross-sectional area. Let the pipe be at varying
heights as shown in Fig. 9.9. We now suppose
that an incompressible fluid is flowing through
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A force is required to produce this
acceleration, which is caused by the fluid
surrounding it, the pressure must be different
in different regions. Bernoulli’s equation is a
general expression that relates the pressure
difference between two points in a pipe to both
velocity changes (kinetic energy change) and
elevation (height) changes (potential energy
change). The Swiss Physicist Daniel Bernoulli
developed this relationship in 1738.

Consider the flow at two regions 1 (i.e., BC)
and 2 (i.e., DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval ∆t, this fluid would have moved. Suppose
v

1
 is the speed at B and v

2
 at D, then fluid initially

at B has moved a distance v
1
∆t to C (v

1
∆t is small

enough to assume constant cross-section along
BC). In the same interval ∆t the fluid initially at
D moves to E, a distance equal to v

2
∆t. Pressures

P
1
 and P

2
 act as shown on the plane faces of

areas A
1
 and A

2
 binding the two regions. The

work done on the fluid at left end (BC) is W
1
 =

P
1
A

1
(v

1
∆t) = P

1
∆V. Since the same volume ∆V

passes through both the regions (from the
equation of continuity) the work done by the fluid
at the other end (DE) is W

2
 = P

2
A

2
(v

2
∆t) = P

2
∆V or,
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the work done on the fluid is  –P
2
∆V. So the total

work done on the fluid is
W

1
 – W

2 
=  (P

1
− P

2
) ∆V

Part of this work goes into changing the kinetic
energy of the fluid, and part goes into changing
the gravitational potential energy. If the density
of the fluid is ρ and ∆m = ρA

1
v

1
∆t = ρ∆V is the

mass passing through the pipe in time ∆t, then
change in gravitational potential energy is

∆U = ρg∆V (h
2 

− h
1
)

The change in its kinetic energy is

∆K = 
1

2

  
     ρ ∆V (v

2
2 − v

1
2)

We can employ the work – energy theorem
(Chapter 6) to this volume of the fluid and
this yields

(P
1
− P

2
) ∆V = 

1

2

  
     ρ ∆V (v

2
2 − v

1
2) + ρg∆V (h

2 
− h

1
)

We now divide each term by ∆V to obtain

(P
1
− P

2
) = 

1

2

  
     ρ (v

2
2 − v

1
2) + ρg (h

2 
− h

1
)

We can rearrange the above terms to obtain

P
1 
+ 

1

2

  
     ρv

1
2 + ρgh

1
 = P

2
+ 

1

2

  
     ρv

2
2 + ρgh

2

     (9.12)
This is Bernoulli’s equation. Since 1 and 2

refer to any two locations along the pipeline, we
may write the expression in general as

 P + 
1

2

  
    ρv2 + ρgh = constant (9.13)

In words, the Bernoulli’s relation may be
stated as follows: As we move along a streamline
the sum of the pressure (P ), the kinetic energy

per unit volume 
ρv2

2





  and the potential energy

per unit volume (ρgh) remains a constant.
Note that in applying the energy conservation

principle, there is an assumption that no energy
is lost due to friction. But in fact, when fluids
flow, some energy does get lost due to internal
friction. This arises due to the fact that in a fluid
flow, the different layers of the fluid flow with
different velocities. These layers exert frictional
forces on each other resulting in a loss of energy.
This property of the fluid is called viscosity and
is discussed in more detail in a later section. The
lost kinetic energy of the fluid gets converted into
heat energy. Thus, Bernoulli’s equation ideally
applies to fluids with zero viscosity or non-

viscous fluids. Another restriction on application

of Bernoulli theorem is that the fluids must be

incompressible, as the elastic energy of the fluid

is also not taken into consideration. In practice,

it has a large number of useful applications and

can help explain a wide variety of phenomena

for low viscosity incompressible fluids.

Bernoulli’s equation also does not hold for non-

steady or turbulent flows, because in that

situation velocity and pressure are constantly

fluctuating in time.

When a fluid is at rest i.e., its velocity is zero

everywhere, Bernoulli’s equation becomes

P
1
 + ρgh

1
 = P

2
 + ρgh

2

(P
1
− P

2
) = ρg (h

2 
− h

1
)

which is same as Eq. (9.6).

9.4.1 Speed of Efflux: Torricelli’s Law

The word efflux means fluid outflow. Torricelli
discovered that the speed of efflux from an open
tank is given by a formula identical to that of a
freely falling body. Consider a tank containing
a liquid of density ρ with a small hole in its side
at a height y

1
 from the bottom (see Fig. 9.10).

The air above the liquid, whose surface is at
height y

2
, is at pressure P. From the equation of

continuity [Eq. (9.10)] we have
v

1 
A

1
 = v

2 
A

2

v
A

A
v2

1

2

= 1

Fig. 9.9 The flow of an ideal fluid in a pipe of varying
cross section. The fluid in a section of length
v

1
∆t moves to the section of length v

2
∆t in

time ∆t.
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If the cross-sectional area of the tank A
2
 is

much larger than that of the hole (A
2
 >>A

1
), then

we may take the fluid to be approximately at rest
at the top, i.e., v

2
 = 0. Now, applying the Bernoulli

equation at points 1 and 2 and noting that at
the hole P

1
 = P

a
, the atmospheric pressure, we

have from Eq. (9.12)

2
1 1 2

1

2
aP  v g y P g y             + ρ + ρ = + ρ

Taking  y
2
 – y

1
 = h we have

( )2
2

a

1

P P
v g h     

−
= +

ρ (9.14)

When P >>P
a 
and 2 g h may be ignored, the

speed of efflux is determined by the container
pressure. Such a situation occurs in rocket
propulsion. On the other hand, if the tank is
open to the atmosphere, then P  = P

a 
and

hgv    21 = (9.15)

This is also the speed of a freely falling body.
Equation (9.15) represents Torricelli’s law.

9.4.2 Dynamic Lift

Dynamic lift is the force that acts on a body,

such as airplane wing, a hydrofoil or a spinning

ball, by virtue of its motion through a fluid. In

many games such as cricket, tennis, baseball,

or golf, we notice that a spinning ball deviates

from its parabolic trajectory as it moves through

air. This deviation can be partly explained on

the basis of Bernoulli’s principle.

(i) Ball moving without spin: Fig. 9.11(a)

shows the streamlines around a

non-spinning ball moving relative to a

fluid. From the symmetry of streamlines

it is clear that the velocity of fluid (air)

above and below the ball at corresponding

points is the same resulting in zero

pressure difference. The air therefore,

exerts no upward or downward force on

the ball.

(ii) Ball moving with spin: A ball which is

spinning drags air along with it. If the

surface is rough more air will be dragged.

Fig 9.11(b) shows  the streamlines of air

for a ball which is moving and spinning

at the same time. The ball is moving

forward and relative to it the air is moving

backwards. Therefore, the velocity of air

above the ball relative to the ball is larger

and below it is smaller (see Section 9.3).

The stream lines, thus, get crowded above

and rarified below.

This difference in the velocities of air results

in the pressure difference between the lower and

upper faces and there is a net upward force on

the ball. This dynamic lift due to spining is called

Magnus effect.

Aerofoil or lift on aircraft wing: Figure 9.11

(c) shows an aerofoil, which is a solid piece

shaped to provide an upward dynamic lift

when it moves horizontally through air. The

cross-section of the wings of an aeroplane

looks somewhat like the aerofoil shown in Fig.

9.11 (c) with streamlines around it. When the

aerofoi l  moves against the wind, the

orientation of the wing relative to flow direction

causes the streamlines to crowd together

above the wing more than those below it. The

flow speed on top is higher than that below it.

There is an upward force resulting in a

dynamic lift of the wings and this balances

the weight of the plane. The following example

illustrates this.

Fig. 9.10 Torricelli’s law. The speed of efflux, v
1
,

from the side of the container is given by
the application of Bernoulli’s equation.
If the container is open at the top to the

atmosphere then 1   2  hv g= .
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Example 9.7 A fully loaded Boeing aircraft

has a mass of 3.3 × 105 kg. Its total wing

area is 500 m2. It is in level flight with a

speed of 960 km/h. (a) Estimate the

pressure difference between the lower and

upper surfaces of the wings (b) Estimate

the fractional increase in the speed of the

air on the upper surface of the wing relative

to the lower surface. [The density of air is ρ

= 1.2 kg m-3]

Answer (a) The weight of the Boeing aircraft is

balanced by the upward force due to the

pressure difference

∆P × A = 3.3 × 105 kg × 9.8

P∆ = (3.3 × 105 kg × 9.8 m s–2) / 500 m2

      = 6.5 ×103 Nm-2

(b) We ignore the small height difference

between the top and bottom sides in Eq. (9.12).

The pressure difference between them is

then

∆P v v= ( )ρ
2

2
2

1
2–

where v
2
 is the speed of air over the upper

surface and v
1
 is the speed under the bottom

surface.

v v
P

v v
2 1

2 1

2
–( ) =

+( )
∆

ρ

Taking the average speed

(a) (b) (c)

Fig 9.11 (a) Fluid streaming past a static sphere. (b) Streamlines for a fluid around a sphere spinning  clockwise.
(c) Air flowing past an aerofoil.

v
av

 = (v
2 
+ v

1
)/2 = 960 km/h = 267 m s-1,

we have

v v v
P

v
2 1 2

– /( ) =av

av

∆
ρ ≈ 0.08

The speed above the wing needs to be only 8
% higher than that below. ⊳

9.5  VISCOSITY

Most of the fluids are not ideal ones and offer some

resistance to motion. This resistance to fluid motion

is like an internal friction analogous to friction when

a solid moves on a surface. It is called  viscosity.

This force exists when there is relative motion

between layers of the liquid. Suppose we consider

a fluid  like oil  enclosed between two glass plates

as shown in Fig. 9.12 (a). The bottom plate is fixed

while the top plate is moved with a constant

velocity v relative to the fixed plate. If oil is

replaced by honey, a greater force is required to

move the plate with the same velocity. Hence

we say that honey is more viscous than oil. The

fluid in contact with a surface has the same

velocity as that of the surfaces. Hence, the layer

of the liquid in contact with top surface moves

with a velocity v and the layer of the liquid in

contact with the fixed surface is stationary. The

velocities of layers increase uniformly from

bottom (zero velocity) to the top layer (velocity

v). For any layer of liquid, its upper layer pulls

it forward while lower layer pulls it backward.

This results in force between the layers. This
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⊳

change of strain’ or ‘strain rate’ i.e. ∆x/(l ∆t) or

v/l instead of strain itself. The coefficient of

viscosity (pronounced ‘eta’) for a fluid is defined

as the ratio of shearing stress to the strain rate.

(9.16)

The SI unit of viscosity is poiseiulle (Pl). Its

other units are N s m-2 or Pa s. The dimensions

of viscosity are [ML-1T-1]. Generally, thin liquids,

like water, alcohol, etc., are less viscous than

thick liquids, like coal tar, blood, glycerine, etc.

The coefficients of viscosity for some common

fluids are listed in Table 9.2. We point out two

facts about blood and water that you may find

interesting. As Table 9.2 indicates, blood is

‘thicker’ (more viscous) than water. Further, the

relative viscosity (η/η
water

) of blood remains

constant between 0 oC and 37 oC.

type of flow is known as laminar. The layers of

liquid slide over one another as the pages of a

book do when it is placed flat on a table and a

horizontal force is applied to the top cover. When

a fluid is flowing in a pipe or a tube, then  velocity

of the liquid layer along the axis of the tube is

maximum and  decreases  gradually as we move

towards the walls where it becomes zero,

Fig. 9.12 (b). The velocity on a cylindrical surface

in a tube is constant.

(a)

(b)

Fig 9.12 (a) A layer of liquid sandwiched between
two parallel glass plates, in which the
lower plate is fixed and the upper one is
moving to the right with velocity v
(b) velocity distribution for viscous flow in
a pipe.

On account of this motion, a portion of liquid,

which at some instant has the shape ABCD,

take the shape of AEFD after short interval of

time (∆t). During this time interval the liquid has

undergone a shear strain of ∆x/l. Since, the

strain in a flowing fluid increases with time

continuously. Unlike a solid, here the stress is

found experimentally to depend on ‘rate of

Fig. 9.13 Measurement of the coefficient of viscosity
of a liquid.

The viscosity of liquids decreases with

temperature, while it increases in the case of gases.

Example 9.8 A metal block of area 0.10 m2 is

connected to a 0.010 kg mass via a string

that passes over an ideal pulley (considered

massless and frictionless), as in Fig. 9.13.

A liquid with a film thickness of 0.30 mm

is placed between the block and the table.

When released the block moves to the right

with a constant speed of 0.085 m s-1. Find

the coefficient of viscosity of the liquid.
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Answer The metal block moves to the right

because of the tension in the string. The tension

T is equal in magnitude to the weight of the

suspended mass m. Thus, the shear force  F  is

F = T = mg = 0.010 kg × 9.8 m s–2 = 9.8 × 10-2 N

Shear stress on the fluid = F/A = N/m2

Strain rate = 

 

  = 

  = 3.46 ×10-3 Pa s
  ⊳

Table 9.2 The viscosities of some fluids

Fluid T(oC) Viscosity (mPl)

Water 20 1.0

100 0.3

Blood 37 2.7

Machine Oil 16 113

38 34

Glycerine 20 830

Honey – 200

Air 0 0.017

40 0.019

9.5.1 Stokes’ Law

When a body falls through a fluid it drags the

layer of the fluid in contact with it. A relative

motion between the different layers of the fluid

is set and, as a result, the body experiences a

retarding force. Falling of a raindrop and

swinging of a pendulum bob are some common

examples of such motion. It is seen that the

viscous force is proportional to the velocity of

the object and is opposite to the direction of

motion. The other quantities on which the force

F depends are viscosity η of the fluid and radius

a of the sphere. Sir George G. Stokes (1819–

1903), an English scientist enunciated clearly

the viscous drag force F as

6F avη= π (9.17)

This is known as Stokes’ law. We shall not

derive Stokes’ law.

This law is an interesting example of retarding

force, which is proportional to velocity. We can

study its consequences on an object falling

through a viscous  medium. We consider a

raindrop in air. It accelerates initially due to

gravity. As the velocity increases, the retarding

force also increases. Finally, when viscous force

plus buoyant force becomes equal to the force

due to gravity, the net force becomes zero and so

does the acceleration. The sphere (raindrop) then

descends with a constant velocity. Thus, in

equilibrium, this terminal velocity v
t 
is given by

6πηav
t
 = (4π/3) a3 (ρ-σ)g

where ρ and σ are mass densities of sphere and

the fluid, respectively. We obtain

v
t
 = 2a2 (ρ-σ)g / (9η) (9.18)

So the terminal velocity v
t
 depends on the

square of the radius of the sphere and inversely

on the viscosity of the medium.

You may like to refer back to Example 6.2 in

this context.

Example 9.9 The terminal velocity of a

copper ball of radius 2.0 mm falling through

a tank of oil at 20oC is 6.5 cm s-1. Compute

the viscosity of the oil at 20oC. Density of

oil is 1.5 ×103 kg m-3, density of copper is

8.9 × 103 kg m-3.

Answer We have v
t 
= 6.5 × 10-2 ms-1, a = 2 × 10-3 m,

g = 9.8 ms-2,  ρ = 8.9 × 103 kg m-3,

σ =1.5 ×103 kg m-3. From Eq. (9.18)

   =  9.9 × 10-1 kg m–1 s–1 ⊳

9.6  SURFACE TENSION

You must have noticed that, oil and water do

not mix; water wets you and me but not ducks;

mercury does not wet glass but water sticks to

it, oil rises up a cotton wick, inspite of gravity,
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Fig. 9.14 Schematic picture of molecules in a liquid, at the surface and balance of forces. (a) Molecule inside
a liquid. Forces on a molecule due to others are shown. Direction of arrows indicates attraction of
repulsion. (b) Same, for a molecule at a surface. (c) Balance of attractive (AI and repulsive (R) forces.

Let us consider a molecule near the surface

Fig. 9.14(b). Only lower half side of it is

surrounded by liquid molecules. There is some

negative potential energy due to these, but

obviously it is less than that of a molecule in

bulk, i.e., the one fully inside. Approximately

it is half of the latter. Thus, molecules on a

liquid surface have some extra energy in

comparison to molecules in the interior. A

liquid, thus, tends to have the least surface

area which external conditions permit.

Increasing surface area requires energy. Most

surface phenomenon can be understood in

terms of this fact. What is the energy required

for having a molecule at the surface? As

mentioned above, roughly it is half the energy

required to remove it entirely from the liquid

i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid

consists of molecules moving about, there cannot

be a perfectly sharp surface. The density of the

liquid molecules drops rapidly to zero around

z = 0 as we move along the direction indicated

Fig 9.14 (c) in a distance of the order of a few

molecular sizes.

9.6.2 Surface Energy and Surface Tension

As we have discussed that an extra energy is

associated with surface of liquids, the creation

of more surface (spreading of surface) keeping

other things like volume fixed requires a

Sap and water rise up to the top of the leaves of

the tree, hair of a paint brush do not cling

together when dry and even when dipped in

water but form a fine tip when taken out of it.

All these and many more such experiences are

related with the free surfaces of liquids. As

liquids have no definite shape but have a

definite volume, they acquire a free surface when

poured in a container. These surfaces  possess

some additional  energy. This phenomenon is

known as surface tension and it is concerned

with only liquid as gases do not have free

surfaces. Let us now understand this

phenomena.

9.6.1 Surface Energy

A liquid stays together because of attraction

between molecules. Consider a molecule well

inside a liquid. The intermolecular distances are

such that it is attracted to all the surrounding

molecules [Fig. 9.14(a)]. This attraction results

in a negative potential energy for the molecule,

which depends on the number and distribution

of molecules around the chosen one. But the

average potential energy of all the molecules is

the same. This is supported by the fact that to

take a collection of such molecules (the liquid)

and to disperse them far away from each other

in order to evaporate or vaporise, the heat of

evaporation required is quite large. For water it

is of the order of 40 kJ/mol.
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horizontal liquid film ending in bar free to slide

over parallel guides Fig (9.15).

Fig. 9.15 Stretching a film. (a) A film in equilibrium;

(b) The film stretched an extra distance.

Suppose that we move the bar by a small

distance d as shown. Since the area of the

surface increases, the system now has more

energy, this means that some work has been

done against an internal force. Let this internal

force be F, the work done by the applied force is

F.d = Fd. From conservation of energy, this is

stored as additional energy in the film. If the

surface energy of the film is S per unit area, the

extra area is 2dl. A film has two sides and the

liquid in between, so there are two surfaces and

the extra energy is

S (2dl) = Fd (9.19)

Or, S=Fd/2dl = F/2l (9.20)

This quantity S is the magnitude of surface

tension. It is equal to the surface energy per unit

area of the liquid interface and is also equal to

the force per unit length exerted by the fluid on

the movable bar.

So far we have talked about the surface of

one liquid. More generally, we need to consider

fluid surface in contact with other fluids or solid

surfaces. The surface energy in that case

depends on the materials on both sides of the

surface. For example, if the molecules of the

materials attract each other, surface energy is

reduced while if they repel each other the

surface energy is increased. Thus, more

appropriately, the surface energy is the energy

of the interface between two materials and

depends on both of them.

We make the following observations from

above:

(i) Surface tension is a force per unit length

(or surface energy per unit area) acting in

the plane of the interface between the plane

of the liquid and any other substance; it also

is the extra energy that the molecules at the

interface have as compared to molecules in

the interior.

(ii) At any point on the interface besides the

boundary, we can draw a line and imagine

equal and opposite surface tension forces

S per unit length of the line acting

perpendicular to the line, in the plane of

the interface. The line is in equilibrium. To

be more specific, imagine a line of atoms or

molecules at the surface. The atoms to the

left pull the line towards them; those to the

right pull it towards them! This line of

atoms is in equilibrium under tension. If

the line really marks the end of the

interface, as in Figure 9.14 (a) and (b) there

is only the force S  per unit length

acting inwards.

Table 9.3 gives the surface tension of various

liquids. The value of surface tension depends

on temperature. Like viscosity, the surface

tension of a liquid usually falls with

temperature.

Table 9.3 Surface tension of some liquids at the
temperatures indicated with the
heats of the vaporisation

Liquid Temp (oC) Surface Heat of

Tension vaporisation
 (N/m)  (kJ/mol)

Helium –270 0.000239 0.115

Oxygen –183 0.0132 7.1

Ethanol 20 0.0227 40.6

Water 20 0.0727 44.16

Mercury 20 0.4355 63.2
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A fluid will stick to a solid surface if the

surface energy between fluid and the solid is

smaller than the sum of surface energies

between solid-air, and fluid-air. Now there is

attraction between the solid surface and the

liquid. It can be directly measured

experimentaly as schematically shown in Fig.

9.16. A flat vertical glass plate, below which a

vessel of some liquid is kept, forms one arm of

the balance. The plate is balanced by weights

on the other side, with its horizontal edge just

over water. The vessel is raised slightly till the

liquid just touches the glass plate and pulls it

down a little because of surface tension. Weights

are added till the plate just clears water.

Fig. 9.16 Measuring Surface Tension.

Suppose the additional weight required is W.

Then from Eq. 9.20 and the discussion given

there, the surface tension of the liquid-air

interface is

S
la 

= (W/2l) = (mg/2l ) (9.21)

where m is the extra mass and l is the length of

the plate edge. The subscript (la) emphasises

the fact that the liquid-air interface tension

is involved.

9.6.3 Angle of Contact

The surface of liquid near the plane of contact,

with another medium is in general curved. The

angle between tangent to the liquid surface at

the point of contact and solid surface inside the

liquid is termed as angle of contact. It is denoted

by θ. It is different at interfaces of different pairs

of liquids and solids. The value of θ determines

whether a liquid will spread on the surface of a

solid or it will form droplets on it. For example,

water forms droplets on lotus leaf as shown in

Fig. 9.17 (a) while spreads over a clean plastic

plate as shown in Fig. 9.17(b).

(a)

(b)

Fig. 9.17 Different shapes of water drops with
interfacial tensions (a) on a lotus leaf (b)

on a clean plastic plate.

We consider the three interfacial tensions at

all the three interfaces, liquid-air, solid-air and

solid-liquid denoted by S
la
, S

sa
 and S

sl 
, respectively

as given in Fig. 9.17 (a) and (b). At the line of

contact, the surface forces between the three media

must be in equilibrium. From the Fig. 9.17(b) the

following relation is easily derived.

S
la
 cos θ  +  S

sl
 =  S

sa
(9.22)

The angle of contact is an obtuse angle if

S
sl  

> S
la
 as in the case of water-leaf interface

while it is an acute angle if S
sl  

< S
la
 as in the

case of water-plastic interface. When θ is an

obtuse angle then molecules of liquids are

attracted strongly to themselves and weakly to

those of solid, it costs a lot of energy to create a

liquid-solid surface, and liquid then does not

wet the solid. This is what happens with water

on a waxy or oily surface, and with mercury on
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any surface. On the other hand, if the molecules

of the liquid are strongly attracted to those of

the solid, this will reduce S
sl
 and therefore,

cos θ may increase or θ may decrease. In this

case θ is an acute angle. This is what happens

for water on glass or on plastic and for kerosene

oil on virtually anything (it just spreads). Soaps,

detergents and dying substances are wetting

agents. When they are added the angle of

contact becomes small so that these may

penetrate well and become effective. Water

proofing agents on the other hand are added to

create a large angle of contact between the water

and fibres.

9.6.4 Drops and Bubbles

One consequence of surface tension is that free

liquid drops and bubbles are spherical if effects

of gravity can be neglected. You must have seen

this especially clearly in small drops just formed

in a high-speed spray or jet, and in soap bubbles

blown by most of us in childhood. Why are drops

and bubbles spherical? What keeps soap

bubbles stable?

As we have been saying repeatedly, a liquid-

air interface has energy, so for a given volume

the surface with minimum energy is the one with

the least area. The sphere has this property.

Though it is out of the scope of this book, but

you can check that a sphere is better than at

least a cube in this respect! So, if gravity and

other forces (e.g. air resistance) were ineffective,

liquid drops would be spherical.

Another interesting consequence of surface

tension is that the pressure inside a spherical

drop Fig. 9.18(a) is more than the pressure

outside. Suppose a spherical drop of radius r is

in equilibrium. If its radius increase by ∆r. The

extra surface energy is

[4π(r + ∆r) 2- 4πr2] S
la
 = 8πr ∆r S

la
(9.23)

If the drop is in equilibrium this energy cost is

balanced by the energy gain due to

expansion under the pressure difference (P
i
 – P

o
)

between the inside of the bubble and the outside.

The work done is

W = (P
i
 – P

o
) 4πr2∆r (9.24)

so that

(P
i
 – P

o
) = (2 S

la
/ r) (9.25)

In general, for a liquid-gas interface, the

convex side has a higher pressure than the

concave side. For example, an air bubble in a

liquid, would have higher pressure inside it.

See Fig 9.18 (b).

Fig. 9.18 Drop, cavity and bubble of radius r.

A bubble Fig 9.18 (c) differs from a drop

and a cavity; in this it has two interfaces. Applying

the above argument we have for a bubble

 (P
i
 – P

o
) = (4 S

la
/ r) (9.26)

This is probably why you have to blow hard,

but not too hard, to form a soap bubble. A little

extra air pressure is needed inside!

9.6.5 Capillary Rise

One consequence of the pressure difference

across a curved liquid-air interface is the well-

known effect that water rises up in a narrow

tube in spite of gravity. The word capilla means

hair in Latin; if the tube were hair thin, the rise

would be very large. To see this, consider a

vertical capillary tube of circular cross section

(radius a) inserted into an open vessel of water

(Fig. 9.19). The contact angle between water and

Fig. 9.19 Capillary rise, (a) Schematic picture of a
narrow tube immersed water.

(b) Enlarged picture near interface.
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⊳glass is acute. Thus the surface of water in the

capillary is concave. This means that there is

a pressure difference between the two sides

of the top surface. This is given by

(P
i
 – P

o
) =(2S/r) = 2S/(a sec θ )

= (2S/a) cos θ (9.27)

Thus the pressure of the water inside the

tube, just at the meniscus (air-water interface)

is less than the atmospheric pressure. Consider

the two points A and B in Fig. 9.19(a). They

must be at the same pressure, namely

P
0
 + h ρ g = P

i
 = P

A
(9.28)

where ρρρρρ is the density of water and h is called

the capillary rise [Fig. 9.19(a)]. Using

Eq. (9.27) and (9.28) we have

h ρ g = (P
i
 – P

0
) = (2S cos θ )/a    (9.29)

The discussion here, and the Eqs. (9.24) and

(9.25) make it clear that the capillary rise is due

to surface tension. It is larger, for a smaller a.

Typically it is of the order of a few cm for fine

capillaries. For example, if a = 0.05 cm, using

the value of surface tension for water (Table 9.3),

we find that

h = 2S/(ρ g a)

  

-1

3 -3 -2 -4

2×(0.073 N m )
=

(10 kg m ) (9.8 m s )(5 × 10 m)

  = 2.98 × 10–2 m = 2.98 cm

Notice that if the liquid meniscus is convex,
as for mercury, i.e., if cos θ is negative then from
Eq. (9.28) for example, it is clear that the liquid

will be lower in the capillary !

Example 9.10 The lower end of a capillary
tube of diameter 2.00 mm is dipped 8.00
cm below the surface of water in a beaker.
What is the pressure required in the tube
in order to blow a hemispherical bubble at
its end in water? The surface tension of
water at temperature of the experiments is
7.30 × 10-2 Nm-1. 1 atmospheric pressure =
1.01 × 105 Pa, density of water = 1000 kg/m3,
g = 9.80 m s-2. Also calculate the excess
pressure.

Answer The excess pressure in a bubble of gas
in a liquid is given by 2S/r, where S is the
surface tension of the liquid-gas interface. You
should note there is only one liquid surface in
this case. (For a bubble of liquid in a gas, there
are two liquid surfaces, so the formula for
excess pressure in that case is 4S/r.) The
radius of the bubble is r. Now the pressure
outside the bubble P

o
 equals atmospheric

pressure plus the pressure due to 8.00 cm of
water column. That is

P
o
 = (1.01 × 105 Pa + 0.08 m × 1000 kg m–3

    × 9.80 m s–2)
    = 1.01784 × 105 Pa

Therefore, the pressure inside the bubble is
  P

i 
 = P

o
 + 2S/r

= 1.01784 × 105 Pa + (2 × 7.3 × 10-2 Pa m/10-3 m)
= (1.01784 + 0.00146) × 105  Pa
= 1.02  × 105 Pa

where the radius of the bubble is taken
to be equal to the radius of the capillary tube,
since the bubble is hemispherical ! (The answer
has been rounded off to three significant figures.)
The excess pressure in the bubble is 146 Pa.

⊳

SUMMARY

1. The basic property of a fluid is that it can flow. The fluid does not have any

resistance to change of its shape. Thus, the shape of a fluid is governed by the

shape of its container.

2. A liquid is incompressible and has a free surface of its own. A gas is compressible

and it expands to occupy all the space available to it.

3. If F is the normal force exerted by a fluid on an area A then the average pressure P
av

is defined as the ratio of the force to area

A

F
P
av

=
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4. The unit of the pressure is the pascal (Pa). It is the same as N m-2. Other common

units of pressure are

1 atm = 1.01×105 Pa

1 bar = 105 Pa

1 torr = 133 Pa = 0.133 kPa

1 mm of Hg = 1 torr = 133 Pa

5. Pascal’s law states that: Pressure in a fluid at rest is same at all points which are at

the same height. A change in pressure applied to an enclosed fluid is transmitted

undiminished to every point of the fluid and the walls of the containing vessel.

6. The pressure in a fluid varies with depth h according to the expression

P = P
a 
+ ρgh

where  ρ is the density of the fluid, assumed uniform.

7. The volume of an incompressible fluid passing any point every second in a pipe of

non uniform crossection is the same in the steady flow.

v A = constant ( v is the velocity and A is the area of crossection)

The equation is due to mass conservation in incompressible fluid flow.

8. Bernoulli’s principle states that as we move along a streamline, the sum of the

pressure (P), the kinetic energy per unit volume (ρv2/2) and the potential energy per

unit volume (ρgy) remains a constant.

P + ρv2/2 + ρgy = constant

The equation is basically the conservation of energy applied to non viscuss fluid

motion in steady state. There is no fluid which have zero viscosity, so the above

statement is true only approximately. The viscosity is like friction and converts the

kinetic energy to heat energy.

9. Though shear strain in a fluid does not require shear stress, when a shear stress is

applied to a fluid, the motion is generated which causes a shear strain growing

with time. The ratio of the shear stress to the time rate of shearing strain is known

as coefficient of viscosity, η.

where symbols have their usual meaning and are defined in the text.

10. Stokes’ law states that the viscous drag force F on a sphere of radius a moving with

velocity v through a fluid of viscosity is, F = 6πηav.

11. Surface tension is a force per unit length (or surface energy per unit area) acting in

the plane of interface between the liquid and the bounding surface. It is the extra

energy that the molecules at the interface have as compared to the interior.

POINTS TO PONDER

1. Pressure is a scalar quantity. The definition of the pressure as “force per unit area”
may give one false impression that pressure is a vector. The “force” in the numerator of
the definition is the component of the force normal to the area upon which it is
impressed. While describing fluids as a concept, shift from particle and rigid body
mechanics is required. We are concerned with properties that vary from point to point
in the fluid.

2.  One should not think of pressure of a fluid as being exerted only on a solid like the
walls of a container or a piece of solid matter immersed in the fluid. Pressure exists at
all points in a fluid. An element of a fluid (such as the one shown in Fig. 9.4) is in
equilibrium because the pressures exerted on the various faces are equal.
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3. The expression for pressure
P = P

a 
+ ρgh

holds true if fluid is incompressible. Practically speaking it holds for liquids, which
are largely incompressible and hence  is a constant with height.

4. The gauge pressure is the difference of the actual pressure and the atmospheric pressure.
P – P

a 
= P

g

Many pressure-measuring devices measure the gauge pressure. These include the tyre
pressure gauge and the blood pressure gauge (sphygmomanometer).

5. A streamline is a map of fluid flow. In a steady flow two streamlines do not intersect as
it means that the fluid particle will have two possible velocities at the point.

6. Bernoulli’s principle does not hold in presence of viscous drag on the fluid. The work
done by this dissipative viscous force must be taken into account in this case, and P

2

[Fig. 9.9] will be lower than the value given by Eq. (9.12).
7. As the temperature rises the atoms of the liquid become more mobile and the coefficient

of viscosity, η  falls. In a gas the temperature rise increases the random motion of
atoms and η  increases.

8. Surface tension arises due to excess potential energy of the molecules on the surface
in comparison to their potential energy in the interior. Such a surface energy is present
at the interface separating two substances at least one of which is a fluid. It is not the
property of a single fluid alone.

EXERCISES

9.1 Explain why
(a) The blood pressure in humans is greater at the feet than at the brain
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of

its value at the sea level, though the height of the atmosphere is more than
100 km

(c) Hydrostatic pressure is a scalar quantity even though pressure is force
divided by area.

9.2 Explain why
(a) The angle of contact of mercury with glass is obtuse, while that of water

with glass is acute.
(b) Water on a clean glass surface tends to spread out while mercury on the

same surface tends to form drops. (Put differently, water wets glass while
mercury does not.)
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(c) Surface tension of a liquid is independent of the area of the surface
(d) Water with detergent disolved in it should have small angles of contact.
(e) A drop of liquid under no external forces is always spherical in shape

9.3 Fill in the blanks using the word(s) from the list appended with each statement:
(a) Surface tension of liquids generally . . . with temperatures (increases / decreases)
(b) Viscosity of gases . . . with temperature, whereas viscosity of   liquids  . . .  with

temperature (increases / decreases)
(c) For solids with elastic modulus of rigidity, the shearing force is proportional

to . . . , while for fluids it is proportional to . . . (shear strain / rate of shear
strain)

(d) For a fluid in a steady flow, the increase in flow speed at a constriction follows
(conservation of mass / Bernoulli’s principle)

(e) For the model of  a plane in a wind tunnel, turbulence occurs at a ... speed for
turbulence for an actual plane (greater / smaller)

9.4 Explain why
(a) To keep a piece of paper horizontal, you should blow over, not under, it
(b) When we try to close a water tap with our fingers, fast jets of water gush

through the openings between our fingers
(c) The size of the needle of a syringe controls flow rate better than the thumb

pressure exerted by a doctor while administering an injection
(d) A fluid flowing out of a small hole in a vessel results in a backward thrust on

the vessel
(e) A spinning cricket ball in air does not follow a parabolic trajectory

9.5 A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with
a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal floor ?

9.6 Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density
984 kg m–3. Determine the height of the wine column for normal atmospheric
pressure.

9.7 A vertical off-shore structure is built to withstand a maximum stress of 109 Pa. Is
the structure suitable for putting up on top of an oil well in the ocean ? Take the
depth of the ocean to be roughly 3 km, and ignore ocean currents.

9.8 A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000
kg. The area of cross-section of the piston carrying the load is 425 cm2. What
maximum pressure would the smaller piston have to bear ?

9.9 A U-tube contains water and methylated spirit separated by mercury. The mercury
columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm
of spirit in the other. What is the specific gravity of spirit ?

9.10 In the previous problem, if 15.0 cm of water and spirit each are further poured into
the respective arms of the tube, what is the difference in the levels of mercury in the
two arms ? (Specific gravity of mercury = 13.6)

9.11 Can Bernoulli’s equation be used to describe the flow of water through a rapid in a
river ? Explain.

9.12 Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s
equation ? Explain.

9.13 Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0
cm. If the amount of glycerine collected per second at one end is 4.0 × 10–3 kg s–1,
what is the pressure difference between the two ends of the tube ? (Density of glycerine
= 1.3 × 103 kg m–3 and viscosity of glycerine = 0.83 Pa s). [You may also like to check
if the assumption of laminar flow in the tube is correct].

9.14 In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the
upper and lower surfaces of the wing are 70 m s–1and 63 m s-1 respectively. What is
the lift on the wing if its area is 2.5 m2  ? Take the density of air to be 1.3 kg m–3.

9.15 Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of
the two figures is incorrect ? Why ?
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Fig. 9.20

9.16 The cylindrical tube of a spray pump has a cross-section of 8.0 cm2 one end of
which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube
is 1.5 m min–1, what is the speed of ejection of the liquid through the holes ?

9.17 A U-shaped wire is dipped in a soap solution, and removed. The thin soap film
formed between the wire and the light slider supports a weight of 1.5 × 10–2 N (which
includes the small weight of the slider). The length of the slider is 30 cm. What is
the surface tension of the film ?

9.18 Figure 9.21 (a) shows a thin liquid film supporting a small weight = 4.5 × 10–2 N.
What is the weight supported by a film of the same liquid at the same temperature
in Fig. (b) and (c) ? Explain your answer physically.

Fig. 9.21

9.19 What is the pressure inside the drop of mercury of radius 3.00 mm at room temperature ?
Surface  tension of mercury  at that temperature  (20 °C) is 4.65 × 10–1 N m–1. The
atmospheric pressure is 1.01 × 105 Pa. Also give the excess pressure inside the drop.

9.20 What is the excess pressure inside a bubble of soap solution of radius 5.00 mm,
given that the surface tension of soap solution at the temperature (20 °C) is 2.50 ×
10–2 N m–1 ? If an air bubble of the same dimension were formed at depth of 40.0 cm
inside a container containing the soap solution (of relative density 1.20), what would
be the pressure inside the bubble ? (1 atmospheric pressure is  1.01 × 105 Pa).
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